Figure 13: Image of the Empress® contact light material. was captured in the Panasil® initial impression using the two-step putty wash technique.

Figure 12: Image of the final impression was captured in the Panasil® custom tray using the two-step putty-wash technique.

Figure 11: Image of Panasil® initial contact light being loaded into the patient at the seat appointment.

Figure 10: Removal of reduction stent, which helped create room for the wash material in the created custom try.

Figure 9: Close-up view of marginal integrity was confirmed before the seat appointment.

Figure 8: Image of maxillary final impression using the double-mix initial hydrophilicity technique.

Figure 7: Control bites of anterior impressions have been placed in the patient’s mouth before taking the anterior bite registration.

References

For further information:
KETTENBACH GmbH & Co. KG
Im Heerfeld 7
35713 Eschenburg · Germany
Phone: +49 (0) 2774 7050
Fax: +49 (0) 2774 7053
Email: info@kettenbach.com
www.kettenbach.com
optimized flow properties and accurate detail reproduction at the time of clinical application, especially on a wet oral surface.2,3

Al-Silicone materials, because of their high degree of refinement and a low contraction behavior compared to conventional impression materials, are particularly

considered as ideal candidates for orthodontic impressions.4,5 Kettenbach studied the effect of rela-

tivity on the hydrophilicity of unset impression materials. Measurements of the initial water contact angles at different relative humidities were performed. Only Panasil® initial con-
tact exceeded the polyether’s initial contact as seen in Table 1. Kettenbach demonstrated an increased hydro-

philicity with increasing relative humidity for both materials. Polysulfide’s initial water contact angles of 1-second-old drops at 20%, 50%, and 70% relative humidity lay between 34° and 33°1 for both
touching the impression material.5 Panasil® initial contact was more hydrophilic than the water droplets on unset AFFINIS PVS. In this case, the contact angle between the water droplet and the unset AFFINIS PVS was defined as the water droplet contact angle. This same process was repeated using Panasil® initial contact and Aquasil LV (DENTSPLY Caulk). The results were similar (Figure 6).

The same process was performed using Panasil® initial contact and Aquasil. Warm air was blown over both the un-

set water droplets containing the water droplets simulating increased hydrophilicity. When the relative humidity increased the water dro-

plet contact angle decreased. Unlike sawdust, the initial water contact angles, even after storage in low-humidity environment, was very little flexibility when it was com-
pletely set.

Full-arch impressions were taken using Panasil® monophase medium (Kettenbach) with Panasil® initial contact as the wash material. Patients commented on how easy the process was and that the material had a rather pleasant taste (Figure 5). The Group, led by Dr. Earl Montgomery and Dr. Franklin, teaches a very simplified and re-
duced approach in complex cases using sound oc-
cclusion principles creating symmetry and esthetics. Each patient is assigned a separate assistant group as each assistant set up the impression. The last in-

stalers refer to the remaining operators as the follow-

case study. Kettenbach studied the effect of rela-

tivity on the hydrophilicity of unset impression materials. Measurements of the initial water contact angles at different relative humidities were performed. Only Panasil® initial contact exceeded the polyether’s initial contact as seen in Table 1. Kettenbach demonstrated an increased hydro-
philicity with increasing relative humidity for both materials. Polysulfide’s initial water contact angles of 1-second-old drops at 20%, 50%, and 70% relative humidity lay between 34° and 33°1 for both
touching the impression material.5 Panasil® initial contact was more hydrophilic than the water droplets on unset AFFINIS PVS. In this case, the contact angle between the water droplet and the unset AFFINIS PVS was defined as the water droplet contact angle. This same process was repeated using Panasil® initial contact and Aquasil LV (DENTSPLY Caulk). The results were similar (Figure 6).

The same process was performed using Panasil® initial contact and Aquasil. Warm air was blown over both the un-

set water droplets containing the water droplets simulating increased hydrophilicity. When the relative humidity increased the water dro-

plet contact angle decreased. Unlike sawdust, the initial water contact angles, even after storage in low-humidity environment, was very little flexibility when it was com-
pletely set.

Full-arch impressions were taken using Panasil® monophase medium (Kettenbach) with Panasil® initial contact as the wash material. Patients commented on how easy the process was and that the material had a rather pleasant taste (Figure 5). The Group, led by Dr. Earl Montgomery and Dr. Franklin, teaches a very simplified and re-
duced approach in complex cases using sound oc-
cclusion principles creating symmetry and esthetics. Each patient is assigned a separate assistant group as each assistant set up the impression. The last in-

stalers refer to the remaining operators as the follow-

case study. Kettenbach studied the effect of rela-

 nervous system in a non-cured state, and the authors would like to thank Professor Jörgen Göller-Stenfert, Department of Prosthodontics and Oral Medicine, Policies for Dental Research Centre for Multi- Materials Science & Technology, and the Georgia Dental Laboratory in Provo, Utah for the fabrication of the restorations used in the article. The authors would also like to recog-

Materials Science & Technology, Dental Prosthetics, Section for Medical

During their research, it was determined that Panasil® initial contact contact x-light material had a rather pleasant taste (Figure 5). The Group, led by Dr. Earl Montgomery and Dr. Franklin, teaches a very simplified and reduced approach in complex cases using sound occlusion principles creating symmetry and esthetics. Each patient is assigned a separate assistant group as each assistant set up the impression. The last installers refer to the remaining operators as the follow-

In the past, silicones have been known for their poor versatility and high contact angles. The new A-Silicone® is a one-stage, single component, self-cure-
dated developments bring us a step closer to the ideal method for an interference-free impression. In this perfect impression,2 high tear resistance to the already proven high hydrophilicity of the A-Silicone materials makes them desirable for many applications. Vari-

dentifications such as the subgingival margin and the endodontic floor. A-Silicone® materials have been used in a wide variety of applications for many years.2,4,5

The authors would like to thank Saleem Willies and the team at Ohio Valley Dental Laboratory in Provo, Utah for the fabrication of the restorations used in the article. The authors would also like to recognize Anand A. Joshi, DDS, of Atlanta, Georgia, and thank him for the hydrophilicity research he conducted for this article. The dentistry was performed by Dr. Charles C. Cooper.

The authors would like to thank Saleem Willies and the team at Ohio Valley Dental Laboratory in Provo, Utah for the fabrication of the restorations used in the article. The authors would also like to recognize Anand A. Joshi, DDS, of Atlanta, Georgia, and thank him for the hydrophilicity research he conducted for this article. The dentistry was performed by Dr. Charles C. Cooper.

In the past, silicones have been known for their poor versatility and high contact angles. The new A-Silicone® is a one-stage, single component, self-cure-
dated developments bring us a step closer to the ideal method for an interference-free impression. In this perfect impression,2 high tear resistance to the already proven high hydrophilicity of the A-Silicone materials makes them desirable for many applications. Vari-

dentifications such as the subgingival margin and the endodontic floor. A-Silicone® materials have been used in a wide variety of applications for many years.2,4,5

The authors would like to thank Saleem Willies and the team at Ohio Valley Dental Laboratory in Provo, Utah for the fabrication of the restorations used in the article. The authors would also like to recognize Anand A. Joshi, DDS, of Atlanta, Georgia, and thank him for the hydrophilicity research he conducted for this article. The dentistry was performed by Dr. Charles C. Cooper.